Biomaterials

Biomaterials cover a broad range of materials that provide an interface between the biological and physical worlds. These include synthetic materials that repair, restore and replace biological functions or biologically-inspired/derived materials that provide new physical, electrical or optical functions. At UCSB, BMSE researchers are actively involved in biomaterial research including: drug and gene delivery carriers, biologically-inspired adhesives, tissue engineering, synovial fluids in joint lubrication, structural materials based upon the mechanical properties of biopolymers and biomembranes.

Affiliated Faculty

Physics

Physical foundations of macromolecular technology: self-assembly, polymer mechanics and stability, energy transport, diffusion, and DNA-based nanotechnology.

Molecular, Cellular, and Developmental Biology

Molecular mechanisms of ribosome pausing during protein synthesis and recruitment of SsrA (tmRNA) to stalled ribosomes.

Chemical Engineering

Intermolecular and surface forces in colloidal and biocolloidal systems and materials, adhesion, and friction.

Chemistry & Biochemistry

RNA folding and evolution; nucleic acid-based bionanotechnology and biomaterials; emergence of complexity in living systems.

Molecular, Cellular, and Developmental Biology

Molecular mechanisms of Alzheimer's disease; structure/function studies on tau using NMR, spectroscopic, biochemical, molecular, and cell biological methods; role of cdk5/p35 in neuronal development and signal transduction.

Molecular, Cellular, and Developmental Biology

Nanomedicine and bioengineering to explore fundamental biology, construct new approaches to disease diagnosis, and develop effective means for disease prevention, therapy, and cure.

Molecular, Cellular, and Developmental Biology

Bio-nano technology including molecular mechanisms controlling self assembly, emergent properties of biomolecular systems from minerals to dynamically tunable color in octopus skin; translation to revolutionary new routes to semiconductors, optoelectronics and energy.

Physics

Soft condensed matter theory including biopolymer and biomembrane electrostatics, protein-membrane interactions, biopolymer solutions, and solution properties of conjugated polymers.

Chemistry & Biochemistry

Bioengineering and protein biophysics.

Chemistry & Biochemistry

  Enzymology of enzymes that modify nucleic acids, including bacterial and human epigenetic enzymes with biomedical relevance. Protein engineering, inhibitor design. Drug development. Nanoparticle-based delivery of siRNA, proteins, and drugs into cells (cancer/embryonic stem cell) and animals. Laser-dependent spatio-temporal control of drug targeting.
    

Materials

Structures and interactions in complex fluids and biological systems; new materials for gene delivery into mammalian cells.

Molecular, Cellular, and Developmental Biology

Molecular biology of animal virus-cell interactions; antiviral innate immunity & mechanisms of interferon action; translational control of gene expression in mammalian cells; A-to-I RNA editing; new materials for gene delivery into mammalian cells.

Chemistry & Biochemistry

Design, synthesis, and characterization of new bioinorganic materials with an emphasis on understanding interface assembly & control of bioprocesses.

Molecular, Cellular, and Developmental Biology

Biochemistry and biophysics of bio-adhesion in marine organisms; bio- and nanomechanics of sclerotized composites; liquid crystals and molecular gradients in biomolecular materials.