Biophysics

Biophysics has century-old roots in the application of physical techniques, such as x-ray crystallography, nuclear magnetic resonance and high-resolution microscopy, to better understand biological structures. Fantastic progress in molecular biology over the last few decades has given birth to techniques that make it possible to address whole biological systems, which are both complex (with many variables) and dynamic (changing in time), with a powerful combination of quantitative measurement and mathematical modeling that is transforming biology into a physical science. Biophysics today is expanding to embrace this trend, and BMSE at UCSB is leading the way. BMSE Biophysics is quantitative bioscience at its best: spanning the spectrum from proteins to pathways to cells, tissues, organisms and even ecosystems, and pioneering new techniques in single-molecule measurement, biomimetic molecular assembly, automated image analysis, high-throughput computation and mathematical modeling.

Affiliated Faculty

Chemistry & Biochemistry
Chemistry & Biochemistry

The origin of life; principles of biomolecular function and design; evolutionary systems biology; phage therapy.

Chemistry & Biochemistry

Biochemistry; protein structure and function relationships; protein dynamics; chemotaxis in bacteria.

Physics

Physical foundations of macromolecular technology: self-assembly, polymer mechanics and stability, energy transport, diffusion, and DNA-based nanotechnology.

Chemical Engineering

Intermolecular and surface forces in colloidal and biocolloidal systems and materials, adhesion, and friction.

Chemistry & Biochemistry

RNA folding and evolution; nucleic acid-based bionanotechnology and biomaterials; emergence of complexity in living systems.

Physics

Optical methods for the study of single biological macromolecules; applications of microfluidic devices.

Molecular, Cellular, and Developmental Biology

Nanomedicine and bioengineering to explore fundamental biology, construct new approaches to disease diagnosis, and develop effective means for disease prevention, therapy, and cure.

Molecular, Cellular, and Developmental Biology

Bio-nano technology including molecular mechanisms controlling self assembly, emergent properties of biomolecular systems from minerals to dynamically tunable color in octopus skin; translation to revolutionary new routes to semiconductors, optoelectronics and energy.

Physics

Soft condensed matter theory including biopolymer and biomembrane electrostatics, protein-membrane interactions, biopolymer solutions, and solution properties of conjugated polymers.

Chemistry & Biochemistry

Bioengineering and protein biophysics.

Chemistry & Biochemistry

  Enzymology of enzymes that modify nucleic acids, including bacterial and human epigenetic enzymes with biomedical relevance. Protein engineering, inhibitor design. Drug development. Nanoparticle-based delivery of siRNA, proteins, and drugs into cells (cancer/embryonic stem cell) and animals. Laser-dependent spatio-temporal control of drug targeting.
    

Materials

Structures and interactions in complex fluids and biological systems; new materials for gene delivery into mammalian cells.

Chemistry & Biochemistry
Chemistry & Biochemistry

Design, synthesis, and characterization of new bioinorganic materials with an emphasis on understanding interface assembly & control of bioprocesses.

Molecular, Cellular, and Developmental Biology

Ion channels in the nervous system and cardiac muscle; molecular mechanisms of ion channel trafficking, regulation, and signal transduction.